Stoichiometric Ratio

The stoichiometric ratio between two reactants will be determined experimentally.

Stoichiometry is the branch of chemistry that deals with the ratio between reactants and products in a chemical reaction.

The net result can be described by a balanced chemical reaction.

This balanced equation gives us valuable information about the reaction.

$$Mg_{(s)} + 2HCI_{(aq)} \longrightarrow MgCI_{2(aq)} + H_{2(g)}$$

$$Mg_{(s)} + 2HCI_{(aq)} \longrightarrow MgCI_{2(aq)} + H_{2(g)}$$

1Mg to 2 HCl

3 Reactants to 2 Products

1 Mg to 1 MgCl₂

2 HCl to 1 MgCl₂

In this Lab we will use the heat given off by a reaction to determine its stoichiometry.

> a Na₂SO_{3(aq)} + b NaOCI_(aq) \rightarrow products + heat

The amount of heat given off, or Q, can be graphed versus the number of moles of reagent.From the graph the stoichiometry can be determined

Calculations

Number of moles of reactant:

Moles = MV Moles = (0.5mol/L)(0.010L)

Change in Temperature:

 $\Delta T = T_f - T_i$ $\Delta T = 32^{\circ}C - 23^{\circ}C$

Procedure

Measure appropriate amounts of NaOCI and Na₂SO₃

- Determine the temperatures of both reagents.
- Do Not use the same thermometer for both reagents

Procedure

Pour the NaOCI into a clean styrofoam cup.

Add the Na_2SO_3 and record the maximum temperature that the mixture reached.

Ensure that the reagents are well mixed

Safety

 It is important that you always keep your safety goggles on.